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Identification of amino acid sequences with good folding properties in an off-lattice model

Anders Irbäck,* Carsten Peterson,† and Frank Potthast‡

Complex Systems Group, Department of Theoretical Physics, University of Lund, So¨lvegatan 14A, S-223 62 Lund, Sweden
~Received 13 May 1996; revised manuscript received 23 August 1996!

Folding properties of a two-dimensional toy protein model containing only two amino acid types, hydro-
phobic and hydrophilic, respectively, are analyzed. An efficient Monte Carlo procedure is employed to ensure
that the ground states are found. The thermodynamic properties are found to be strongly sequence dependent
in contrast to the kinetic ones. Hence, criteria for good folders are defined entirely in terms of thermodynamic
fluctuations. With these criteria sequence patterns that fold well are isolated. For 300 chains with 20 randomly
chosen binary residues approximately 10% meet these criteria. Also, an analysis is performed by means of
statistical and artificial neural network methods from which it is concluded that the folding properties can be
predicted to a certain degree given the binary numbers characterizing the sequences.
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I. INTRODUCTION

The protein folding problem is not merely an engineeri
task — given sequences of amino acid residues comput
three-dimensional~3D! structure by minimizing an appropri
ately chosen energy function. Since for such models the
ergy landscape is often rugged, the resulting 3D configu
tions may be hard to reach and furthermore may not
thermodynamically stable. It has therefore been argued
only those sequences with ‘‘nice’’ energy landscapes h
survived the evolution@1#.

A proper understanding of the thermodynamics and kin
ics of protein folding requires studies of simplified toy mo
els where the conditions can be somewhat controlled. For
choice of such models two major pathways exist. The c
rently most popular choice is lattice models with conta
term interactions; see, e.g., Refs.@1–4#. This approach has
the advantage that the ground states are known, but a
same time it has the potential danger that the energy la
scape contains artifacts from the discrete description
space. Alternatively, one may use a continuum model w
simplified interactions~see, e.g., Refs.@5–7#!, in which case
substantial simulations are needed to map out the gro
states. On the other hand, in this case properties of the
ergy landscape should be closer to those of the real wor

The aim of this paper is twofold — to map out the foldin
properties of the two-dimensional continuum model of@8,7#,
hereafter denoted theAB model, and to analyze how th
folding properties depend upon the sequences using sta
cal and state-of-the-art regression methods.

The folding properties of theAB model are investigated
with respect to thermodynamics and kinetics given a se
thoroughly simulated sequences. In total 300 sequences o
hydrophobic and hydrophilic residues (11 and21, respec-
tively! are studied using an efficient dynamical-parameter
gorithm ~see Ref.@7# and references therein!. The thermody-
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namic properties are studied using the mean-square dist
d2 between different configurations. A low average val
^d2& signals that the chain exists in a state with well-defin
structure. It turns out that^d2& exhibits very strong sequenc
dependence in contrast to the kinetic properties. Based
this we formulate criteria for good folders entirely based
the distribution ofd2. Using these criteria roughly 10% o
the 300 generated and studied sequences survive as
folders.

Next we pose the question of what characterizes the g
folders in terms of sequence patterns. Rather than analy
the ‘‘bare’’ binary sequences of hydrophobicity, we focus
effective variables such as random walk representatio
block fluctuations, and the number of11 embedded betwee
two 21. This has the virtue that the analysis will captu
long range correlations in addition to the local ones. W
investigate hoŵ d2& depends upon these quantities. This
done using tools of varying sophistication — covariance m
trix and feedforward artificial neural networks~ANN!. Using
ANN we predict^d2& given the sequence. With our limite
data set the results look very promising. Indeed, the fold
properties strongly depend upon sequence patterns. T
findings give further evidence of the nonrandomness
ported in Ref.@10#.

Hydrophobicity is widely believed to play a central role
the formation of 3D protein structures. In Ref.@10# the ques-
tion of whether proteins originate from random sequence
amino acids was addressed by means of a statistical ana
in terms of blocked and random walk values formed by
nary hydrophobic assignments of the amino acids along
protein chains. The results, which were based upon prot
in the SWISS-PROT data base@11#, convincingly demon-
strated that the amino acid sequences in proteins differ f
what is expected from random sequences in a statistical
nificant way. In Ref.@10# also preliminary results from the
AB model using the same data as in this work were sub
to the same statistical analysis. The interesting observa
was made that theAB model sequences that fold well ac
cording to low^d2&-value criteria exhibit similar deviations
from randomness as for the functional proteins. The dev
tions from randomness can be interpreted as originating f
860 © 1997 The American Physical Society
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55 861IDENTIFICATION OF AMINO ACID SEQUENCES WITH . . .
anticorrelations in terms of an Ising spin model for the h
drophobicities.

Our studies of theAB model are limited to two dimen
sions in order to be able to analyze many sequences w
limited CPU resources. How realistic this approximation
can of course be questioned. The system may be ‘‘stiff
than a three-dimensional one when it comes to swapp
monomer positions.

This paper is organized as follows. In Sec. II we brie
describe the model and generation of sequences. The M
Carlo method and what is being measured can be foun
Sec. III. The thermodynamics and kinetics of the system
described in Sec. IV, whereas Sec. V contains our statis
and ANN analysis. In Sec. VI we briefly review the resu
from Ref.@10# comparing deviations from nonrandomness
the two-dimensionalAB model with those of functional pro
teins. A brief summary can be found in Sec. VII.

II. THE MODEL

A. General formulation

TheAB model consists of two kinds of monomers,A and
B, respectively. These are linked by rigid bonds of u
length to form linear chains living in two dimensions. For
N-mer the sequence of monomers is described by the bi
variabless1 , . . . ,sN and the configuration by the angle
u2 , . . . ,uN21, whereu i denotes the bend angle at sitei and
is taken to satisfyuu i u<p. The energy function is given by

E~u,s!5 (
i52

N21

E1~u i !1 (
i51

N22

(
j5 i12

N

E2~r i j ,s i ,s j !, ~1!

where

E1~u i !5 1
4 ~12cosu i !,

E2~r i j ,s i ,s j !54@r i j
2122C~s i ,s j !r i j

26# ~2!

and r i j5r i j (u i11 , . . . ,u j21) denote the distances betwee
sites i and j . The termE1(u i) favors alignment of three
successive sites;i21, i , and i11. The nonbonded interac
tions E2 are Lennard-Jones potentials with a speci
dependent coefficientC(s i ,s j ), which is taken to be 1 for
an AA pair ~strong attraction!, 1/2 for aBB pair ~weak at-
traction!, and 21/2 for an AB pair ~repulsion!. Conse-
quently, there is an energetic preference for separation
tween the two kinds of monomers. In fact, it wa
demonstrated in@8# that ground-state configurations tend
have a core consisting mainly ofA monomers, which shows
that A and B monomers behave as hydrophobic and po
residues, respectively. The behavior of the model at fin
temperatureT is defined by the partition function

Z~T,s!5E F )
i52

N21

du i Gexp@2E~u,s!/T#. ~3!

B. The sequences

In total 300 sequences were drawn randomly from the
of all distinguishable chains with 14A and 6B monomers.
Our motivation for this somewhat arbitrary choice ofA/B
-
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ratio is that there are thermodynamically stable structure
relatively high temperatures for this ratio@7#. This set con-
tains 19 980 sequences, whereas the total number of
quences with the same composition is 38 760. Among
300 sequences 4 are symmetric. The 300 distinguishable
quences can be taken as 300 independent sequences d
from the distribution of all sequences with double weight f
every asymmetric sequence.

III. SIMULATIONS

A. Methods

We have performed numerical simulations of both t
thermodynamic and kinetic behavior of the 300 random
selected sequences. At low temperature the system is
folded phase with high free-energy barriers, which mak
conventional simulation methods very time consuming.
in Ref. @7#, we therefore employ the dynamical-parame
method for the thermodynamic simulations. In this approa
one tries to accelerate the simulation by letting some par
eter of the model become a dynamical variable, which ta
values ranging over a definite set. In the present work
have taken the temperature as a dynamical param
~‘‘simulated tempering’’@9#!, which means that we simulat
the joint probability distribution

P~u,k!}exp@2gk2E~u,s!/Tk#, ~4!

whereTk , k51, . . . ,K, are the allowed values of the tem
perature. Thegk’s are tunable parameters, which must
chosen carefully for each sequence. The determination
these parameters has been carried out by the same me
as in Ref.@7#.

The joint distributionP(u,k) is simulated by using an
ordinary Metropolis step@12# in k and a hybrid Monte Carlo
update@13# of u. The hybrid Monte Carlo update is based o
the evolution arising from the fictitious Hamiltonian

HMC~p,u!5
1

2(
i52

N21

p i
21E~u,s!/T, ~5!

wherep i is an auxiliary momentum variable conjugate
u i . The first step in the update is to generate a new se
momenta p i from the equilibrium distribution P(p i)
}exp(2pi

2/2). Starting from these momenta and the old co
figuration, the system is evolved through a finite-step
proximation of the equations of motion. The configurati
generated in such a trajectory is finally subject to an acc
or-reject question, which removes errors due to the discr
zation of the equations of motion. The hybrid Monte Ca
update has two tunable parameters, the step sizee and the
number of stepsn in each trajectory.

The dynamical-parameter method greatly improves
frequency of transitions between different free-energy v
leys, as compared to plain hybrid Monte Carlo method.
Ref. @7# a speed up factor of almost 103 was observed for
system sizeN510. ForN520 we expect the gain to be eve
larger.

In our simulations we used a set ofK513 allowed tem-
perature values, which were equidistant in 1/T and ranging
from 0.15 to 0.60. Each hybrid Monte Carlo trajectory w
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862 55ANDERS IRBÄCK, CARSTEN PETERSON, AND FRANK POTTHAST
followed by one Metropolis step ink. The step size param
etere was taken to vary withT, from 0.0025 atT50.15 to
0.005 atT50.6, whilen5100 was held fixed. For the typica
sequence the average acceptance rate was around 95
theu update and 65% for thek update. For each sequence
total of 440 000 update cycles were carried out, which
quires around 4 CPU hours on a DEC Alpha 2000.

In order to study the kinetic behavior of the model, w
have performed hybrid Monte Carlo simulations at differe
fixed values ofT. Starting from random coils, we study th
rate of the subsequent relaxation process. While our hy
Monte Carlo dynamics is certainly different from any re
dynamics, it is still a small-step evolution, so the system
to pass through the free-energy barriers. Hence, we ex
relaxation times obtained in this way to reflect the act
kinetic properties of the system.

Our simulations of the kinetics have been performed
five different T. The trajectory lengthne50.25 was held
fixed, and the average acceptance rate was typically 85%
higher.

FIG. 1. P(d2) for T50.15 andT50.60, respectively, for the
sequences in Table I; 81~solid line!, 10 ~dashed line!, and 50~dot-
ted line!. ForT50.15 the distribution for sequence 81 is dominat
by two narrow peaks at smalld2, which extend outside the figur
with a maximum value of around 20.
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B. Measurements

In our thermodynamic simulations the main goal is to fi
out whether the system exists in a state with well-defin
shape. To address this question, we introduce the u
mean-square distance between configurations. For two
figurationsa andb we define

dab
2 5min

1

N(
i51

N

ux̄ i
~a!2 x̄ i

~b!u2, ~6!

where ux̄ i
(a)2 x̄ i

(b)u denotes the distance between the si
x̄ i

(a) and x̄ i
(b) ( x̄ i

(a) ,x̄ i
(b)PR2), and where the minimum is

taken over translations, rotations, reflections, and orien
tions. The probability distribution ofd2 for fixed temperature
T and sequences is given by

P~d2!5
1

Z~T,s!2
E du~a!du~b!d~d22dab

2 !

3e2E~u~a!,s!/Te2E~u~b!,s!/T, ~7!

whered(•) denotes the Dirac delta function.P(d2) is a very
useful quantity@5# for describing the magnitude of the re
evant thermodynamic fluctuations, and can be determi
numerically. In Fig. 1 we show three examples ofd2 distri-
bution at two different temperatures. In what follows we w
also frequently use the mean ofP(d2),

^d2&5E dd82P~d82!d82. ~8!

The energy level spectrum can be studied by using a que
ing procedure, where whenever the lowest allowed temp
ture value is visited, the system is quenched to zero temp
ture by means of a conjugate gradient minimization. W
this method the ground states are found for most of the
quences. One reason for believing this is that the two or f
symmetry-related copies of the lowest-lying minimum we
all visited in the simulations. In Fig. 2 we show the evolutio

FIG. 2. Evolution of the quenched~diamonds! and unquenched
~line! energies in the simulation of sequence 10~see Table I!. Mea-
surements were taken every ten iterations. Shown are the data
responding to the lowest allowed temperature.
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of the quenched and unquenched energies in one of the s
lations.

IV. THERMODYNAMIC AND KINETIC PROPERTIES

In this section we present the results of our thermo
namic and kinetic simulations. Based on these results,
then formulate criteria for good folding sequences.

A. Thermodynamics

The thermodynamic behavior of theAB model has been
studied previously for chain lengthsN58 and 10@7#. This
study showed that whether or not the chain exhibits a w
defined structure depends strongly on the sequence, at
temperature. Using the dynamical-parameter method, we
now able to extend these calculations toN520. The results
obtained closely resemble those forN58 and 10@7#; in par-
ticular, they show that the sequence dependence of the
modynamic behavior remains strong forN520.

In order to illustrate this, we show in Figs. 1 and 3 resu
for the three sequences in Table I. In Fig. 1 thed2 distribu-
tions are shown for the lowest and highest temperatures s
ied,T50.15 and 0.60. AtT50.60 the distributions are simi

FIG. 3. The temperature dependence of~a! the radius of gyra-
tion ^r gyr

2 &1/2 and~b! ^d2& for the sequences in Table I: 81 (3), 10
(L), and 50 (h).
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lar, and show that the fluctuations in shape are large.
T50.15P(d2) is, by contrast, strongly sequence depende
We see that one chain exists in a state with very well-defi
shape, while the other two still undergo large fluctuatio
The differences inP(d2) are clearly reflected in the mea
value ^d2&, which is shown as a function ofT in Fig. 3~b!.

Although these three chains behave in very differe
ways, they have similar extension. In fact, from Fig. 3~a! it
can be seen that the differences in radius of gyration are 1
or smaller at all the temperatures studied. Also, we note
the radius of gyration decreases gradually with decreas
temperature. No abrupt changes can be seen.

B. Kinetics

Next we study the time needed by the system to find
minimum energy configuration. Using hybrid Monte Car
dynamics, we monitor the mean-square distanced0

2 to this
configuration@see Eq.~6!#. The simulations are started from
random coils, and as a criterion of successful folding we
the conditiond0

2,0.3. At low temperatures the folding tim
fluctuates widely, which makes the average folding time d
ficult to measure. For this reason we have chosen to mea
the probability of successful folding within a given tim
@1,15#. Following Ref. @1#, this quantity will be called the
foldicity. In our simulations the maximum allowed foldin
time is set to 5000 trajectories. For each of the 300
quences we studied five different temperatur
T50.15,0.18,0.24,0.34, and 0.60. For eachT we carried out
25 simulations for different initial configurations.

The foldicity is expected to be low both at high and lo
temperature. At low temperature the suppression is du
the ruggedness of the free-energy landscape. At high t
perature folding is slow because the search is random.

For a majority of the sequences studied we find that
foldicity exhibits a peak in the interval 0.15<T<0.60. In
order to get precise estimates of the height and location
the peak, one would clearly need more data points. Howe
the available data demonstrate that the position of the pea
fairly sequence independent. In fact, for 243 of the 300
quences we obtained a higher foldicity atT50.34 than at the
other four temperatures. Also, we note that all sequen
have a foldicity of 12% or higher atT50.34, as can be see
from Fig. 4. Therefore, it appears that the kinetic behav
has a relatively weak sequence dependence.

In order to illustrate the implications of this, we hav
plotted in Fig. 5 the foldicity in two different ways. In Fig
5~a! foldicity is plotted against temperature, and in Fig. 5~b!
it is plotted against̂d2&. Again, we use the three sequenc
in Table I as examples. From~a! it can be seen that, at
given temperature, the foldicity is roughly similar for th
three sequences. Nevertheless, it follows from~b! that their
folding properties are very different; sequence 10 has a w
defined shape at the point where the system freezes, whi
not true for the other two sequences.

TABLE I. Examples of three sequences.

81 AAABAAABAAABBAABBAAA
10 ABAAABBAABAAAAAAAABB
50 BABAAAAAAABAAAABAABB
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C. Folding criteria

A good folder is a sequence that , at some value of
parameterT, exists in a unique and kinetically accessib
state with well-defined shape. One way to find out whet
or not a given sequence meets this requirement is to

FIG. 4. Histogram of the foldicity atT50.34 for the full set of
300 sequences~solid line! and for a subset of 37 sequences th
satisfy the thermodynamic stability condition in Eq.~9! ~dashed
line!.

FIG. 5. Foldicity against~a! T and~b! ^d2& for the sequences 81
(3), 10 (L), and 50 (h); see Table I.
e

r
st

locate the lowest temperature at which folding is fast,T̃, and
then study the thermodynamic behavior at this temperat
If the sequence is found to exhibit a well-defined structure
T̃, then it is a good folder. Alternatively, this can be form
lated in terms of the folding temperatureTf , defined as the
temperature where the dominance of a single state sets
good folder is a sequence withTf.T̃.

In our determination of good folders we take the kine
quantityT̃ to be same for all sequences. This means that
classification is entirely determined by the thermodynam
behavior at a fixed temperature, which we take asT̃50.15
@cf. Fig. 5~a!#. Our motivation for this simplifying approxi-
mation is that the kinetic behavior has a relatively weak
quence dependence, as discussed in the previous subse

With this approximation, a natural criterion for good fold
ers would be to require that^d2&, d̃2 for somed̃. Such a cut
is appropriate for most sequences. However, some care
to be exercised since one might encounter situations wh
P(d2) has a tiny but distant outlier bump, which can ma
^d2& large even though the system spends a large fractio
the time very near one particular configuration. Taking t
into account we define a sequence to be a good folder if

^d2&, d̃ 2 or P~d2,0.1!5E
0

0.1

dd82P~d82!. P̃ ~9!

with d̃250.3 andP̃50.35.
With this choice of parameters, we find that 24 of o

sequences satisfŷd2&, d̃2 whereas 30 satisfyP(d2,0.1)
. P̃. Our set of good folders, which satisfy one or both
these conditions, contains 37 of the 300 sequences, or 1

The precise number of sequences classified as good
ers depends, of course, on the choice ofd̃ and P̃, which to
some extent is arbitrary. However, it should be stressed
for most of the sequences the classification is unambigiu
in the sense that it is insensitive to small changes ofd̃ and
P̃. Furthermore, we note that the foldicity distribution fo
good folders is similar to that for all sequences, as can
seen from Fig. 4. If these distributions had been different,
use of a sequence independentT̃ would have been unjusti
fied.

V. SEQUENCE CHARACTERISTICS OF GOOD FOLDERS

In this section we analyze hoŵd2& depends upon the
binary patterns of the sequences. This is done in two st
First we make a statistical analysis in terms of correlatio
Second, we employ a feedforward ANN to predict^d2&
given the sequence as input.

A. Choice of variables

It turns out to be enlightening and profitable to transfo
the original binary patterns into more global variables pr
to performing the statistical and ANN analysis. The follow
ing variables are formed:

Random walk representations— r n . In order to build in
some long range correlation properties we consider rand
walk representations

t
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r n5(
i51

n

s i , n51, . . . ,N ~10!

Block fluctuations—c i
(s) and c (s). For a block sizes we

define the variables@10#

s i
~s!5(

j51

s

s~ i21!s1 j5r is2r ~ i21!s , i51, . . . ,N/s

~11!

In order to efficiently capture the fluctuations of the blo
variables we introduce the normalized variables

c i
~s!5

1

KS s i
~s!2

s

N(
j51

N/s

s j
~s!D 2, i51, . . . ,N/s ~12!

and the~normalized! mean-square fluctuation of the bloc
variables

c~s!5
s

N(
i51

N/s

c i
~s! , ~13!

where the constantK can be found in Ref.@10#.
Number of internal A’s—NIA . This is the number of

s511 surrounded on both sides bys511. For boundary
residues, a single adjacents511 is sufficient for giving a
count. The reason for this choice of variable is that in
homopolymer limit,AAAA•••A, the energy landscape is de
generate and, hence, the fluctuations are large. There
one expects long stretches ofA’s ~or B’s! to be rare in good
folders, and thatNIA tends to be low for such sequences.

Number of clumps—NC . This quantity is defined as th
number of clumps ofs561. The reason for including this
variable is similar to what was argued forNIA above; it
seems natural to expect a highNC for good folders.

We expect these preprocessed variables, which of co
are not independent of each other, to shed more light on
structure than the ‘‘raw’’s561 ones, when it comes to
relate the sequences to^d2&.

In this section we will make use of all patterns, even tho
generated by symmetry giving rise to the same^d2&. As
mentioned in Sec. II B, 4 of the 300 original sequences
symmetric, which means that we have a total of 596 patte
at our disposal.

B. Correlations

To what extent iŝ d2& correlated withr n , c i
(4) , c (4),

NIA , andNC? In Fig. 6 the correlation between̂d2& and
these variables is shown.

As can be seen from Fig. 6 the correlations are subs
tial. It should also be mentioned that the same correla
patterns emerge when reducing the data set by a factor
The symmetry forr n aroundn510 is inherent from the way
we have generated the data, and leaves us with nine inde
dent measurements, corresponding to, e.g.,r 1 through r 9.
The following general observations can be made:~1! ^d2&
and r n exhibit sizable positive correlations near the e
points, implying that proteins with manyA’s near the ends
do not fold well.~2! ^d2& and the block fluctuations,c i

(4) and
e

re,

se
he

e

e
s

n-
n
4.

en-

c (4), also show strong positive correlations. This is cons
tent with what was observed for real proteins with limite
net hydrophobicity in Ref.@10#, where these variables ar
anticorrelated as compared to what is expected from rand
hydrophobicity distributions.~3! The strongest positive cor
relation is between̂ d2& and the number of internalA’s
(NIA). This is in line with what is expected according to th
motivation when introducingNIA above.~4! Related to posi-
tive correlation ofNIA is the strong anticorrelation betwee
^d2& and the number of clumpsNC .

C. Artificial neural networks

Given the substantial correlations between^d2& and the
various quantities formed out of the sequence patterns
should be possible to make a regression model. If eno
data are available for an efficient and reliable fit one sho
be able to predict the folding properties given a binary
quence. The state-of-the-art technique for such modeling
feedforward ANN~see, e.g., Ref.@14#!, which will be used
here. This method has the advantage of capturing nonlin
dependencies in a generic way in contrast to standard lin
regression approaches. In our case the feedforward A
consists of an input layer representing the variables defi
in Sec. V A above, an output unit for̂d2& and a set of
hidden units in order to model nonlinearities. The weigh
connecting the nodes are the parameters of the system
order to avoid overfitting, the number of weights~param-
eters! should be less than the number of ‘‘training’’ pattern
Also, some of the patterns should be set aside for ‘‘testin
Using all the quantities~only r 1 throughr 9 due to symme-
tries! defined in Sec. V A with 5 hidden units implies 17• 5
1 5 5 90 parameters.

The network was trained using theJETNET 3.0 package
@16# with an initial learning rateh050.5, which decrease
according tohk50.998hk21 and momentuma50.7. In or-
der to obtain as reliable performance as possible,
K-fold cross validation procedure was used, where the d
set was randomly divided intoK equal parts. Each of the
K different parts was once used as a test set, while the
mainingK21 sets were used for training. In our proble
sets withK52, 3, and 4 were used. In Fig. 7 the resultin
prediction,̂ d̂2&, is compared with the true values,^d2&, for a

FIG. 6. Correlations of̂ d2& againstr n @n51, . . . ,20# (1),
c i
(4) @i51, . . . ,5# (3), c (4) (s), NIA (L), andNC (h).
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866 55ANDERS IRBÄCK, CARSTEN PETERSON, AND FRANK POTTHAST
representative subset of the sequences usingK53 is shown.
As can be seen from Fig. 7 the predicted values follow t
true values pretty well even though sometimes quantitat
agreement is lacking. The degree of success can be qua
fied using the standard error of prediction,

R5
1

s2

1

N( ~^d̂2&2^d2&!2, ~14!

wheres is the standard deviation of^d2& for all 596 pat-
terns. ForK53 and 4 we findR50.6960.02. This value
deteriorates somewhat if a smaller subset of the data is u
which indicates that with a larger available data set the p
formance is likely to improve. In the long term one woul
like to predict a classification~folder or nonfolder! but the
limited folding data at our disposal do not yet allow for tha

VI. NONRANDOMNESS AND FOLDING

In Sec. V we studied the difference between folding a
nonfolding sequences in theAB model. This could be done
in a controlled way due to the fact that we have unbias
samples of folding and nonfolding sequences at our dispo
To assess the applicability of our methods to real amino a
sequences is more difficult, and we shall not deal here w
the problem of predicting the behavior of individual amin
acid sequences. However, we would like to stress that
binary hydrophobicity patterns corresponding to a large cla
of functional proteins do exhibit interesting similarities wit
folding sequences in theAB model, as was demonstrated i
Ref. @10#. The proteins sequences considered in Ref.@10#
have a limited net hydrophobicity

X5
N12Np

ANp~12p!
, ~15!

whereN1 is the number of hydrophobic residues,N is the
total number of residues, andp is the average ofN1 /N over
all sequences. In the following, we consider sequences w
uXu,0.5.

FIG. 7. Comparison of predicted and true values,^d̂2& and
^d2&, respectively, usingK53 for sequences 100 – 200. In order t
guide the eye, lines connecting the points are drawn. The full l
representŝd2& and the dashed linêd̂2&.
e
e
nti-
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r-

.

d

d
al.
id
th

e
s

th

In order to examine these two groups of binary strings
is instructive to consider the scaling of the fluctuation va
ablec (s) with block sizes @10#. In Fig. 8 we show results for
this quantity. For both groups, it can be seen thatc (s) grows
significantly slower withs than for random sequences. Th
behavior implies that the sequence variabless i exhibit anti-
correlations. A simple way to see that is to consider
one-dimensional Ising model, where each configuration
given a statistical weight

P}expS K (
i51

N21

s is i11D ~16!

For K50 thes i ’s are completely random, whileK.0 and
K,0 correspond to ferromagnetic and antiferromagnetic
havior, respectively. It turns out that one obtains results si
lar to those seen in Figs. 8~a! and 8~b! for K520.25.

e

FIG. 8. Mean-square fluctuation of the block variables,c (s),
against block sizes. ~a! Good folding sequences in theAB model.
Also shown are the means ~full line! and thes6s band~bounded
by dotted lines! for random sequences@10#. ~b! Functional proteins
for uXu,0.5, 50,N<150 ~1, 2457 qualifying proteins!,
150,N<250 (3, 2228!, and 250,N<350 (L, 1642!. All data
are from the SWISS-PROT data base@11#. The straight line is the
result for random sequences@10#.
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VII. SUMMARY

Fairly detailed studies of the folding properties of a t
model for proteins, containing effective hydrophobicity i
teractions only, have been performed. The thermodyna
quantity^d2& exhibits a strong sequence dependence in c
trast to foldicity, which measure the kinetic propertie
Hence criteria for chains with good folding properties ha
been devised solely in terms of^d2&. With these criteria,
approximately 10% of the 300 generated sequences are
sified as good folders. These conclusions have been pos
due to extensive searches using an efficient dynami
parameter algorithm, which with very large probability vis
the ground states. A similar fraction of good folders w
obtained in the lattice model study of Ref.@1#, where 30 out
of 200 randomly chosen sequences were classified as
folders.

Our conclusion that the thermodynamic properties
more important for the classification of folders or nonfolde
A

es

tl.

s.
ic
n-
.
e

as-
ble
l-

s

od

e

than the kinetic ones is in line with the lattice model resu
of Ref. @4#. These authors introduced a kinetic glass tran
tion temperature, which was found to be nearly seque
independent. Although the kinetic studies of Ref.@4# are
more elaborate than ours, it should be stressed, however
our data provide no justification for introducing this trans
tion temperature, which may indicate a difference betwe
the models.

Using statistical and artificial neural network method
substantial functional dependencies between sequence
terns and̂ d2& are revealed. With larger statistics it should
possible given the sequence pattern to predict^d2& within a
reasonable confidence level, in other words to pred
whether a given sequence folds or not.

Related to this strong correlation is the observed patt
of the nonrandomness for the folders, which show sim
qualitative behavior with what is observed for real prote
@10#.
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