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Identification of amino acid sequences with good folding properties in an off-lattice model
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Folding properties of a two-dimensional toy protein model containing only two amino acid types, hydro-
phobic and hydrophilic, respectively, are analyzed. An efficient Monte Carlo procedure is employed to ensure
that the ground states are found. The thermodynamic properties are found to be strongly sequence dependent
in contrast to the kinetic ones. Hence, criteria for good folders are defined entirely in terms of thermodynamic
fluctuations. With these criteria sequence patterns that fold well are isolated. For 300 chains with 20 randomly
chosen binary residues approximately 10% meet these criteria. Also, an analysis is performed by means of
statistical and artificial neural network methods from which it is concluded that the folding properties can be
predicted to a certain degree given the binary numbers characterizing the sequences.
[S1063-651%97)11901-9

PACS numbds): 87.15-v, 87.10:+e

[. INTRODUCTION namic properties are studied using the mean-square distance
5% between different configurations. A low average value
The protein folding problem is not merely an engineering( %) signals that the chain exists in a state with well-defined
task — given sequences of amino acid residues compute igfructure. It turns out thgs?) exhibits very strong sequence
three-dimensional3D) structure by minimizing an appropri- dependence in contrast to the kinetic properties. Based on
ately chosen energy function. Since for such models the erthis we formulate criteria for good folders entirely based on
ergy landscape is often rugged, the resulting 3D configurathe distribution of§2. Using these criteria roughly 10% of
tions may be hard to reach and furthermore may not bé¢he 300 generated and studied sequences survive as good
thermodynamically stable. It has therefore been argued thdolders.
only those sequences with “nice” energy landscapes have Nextwe pose the question of what characterizes the good
survived the evolutionfl]. folders in terms of sequence patterns. Rather than analyzing
A proper understanding of the thermodynamics and kinetthe “bare” binary sequences of hydrophobicity, we focus on
ics of protein folding requires studies of simplified toy mod- effective variables such as random walk representations,
els where the conditions can be somewhat controlled. For thielock fluctuations, and the number 6fL embedded between
choice of such models two major pathways exist. The curtwo —1. This has the virtue that the analysis will capture
rently most popular choice is lattice models with contactlong range correlations in addition to the local ones. We
term interactions; see, e.g., Ref4—4]. This approach has investigate how(§%) depends upon these quantities. This is
the advantage that the ground states are known, but at thione using tools of varying sophistication — covariance ma-
same time it has the potential danger that the energy landrix and feedforward artificial neural network&NN). Using
scape contains artifacts from the discrete description oANN we predict(5%) given the sequence. With our limited
space. Alternatively, one may use a continuum model witldata set the results look very promising. Indeed, the folding
simplified interactiongsee, e.g., Ref§5—7]), in which case properties strongly depend upon sequence patterns. These
substantial simulations are needed to map out the grouniindings give further evidence of the nonrandomness re-
states. On the other hand, in this case properties of the eported in Ref[10].
ergy landscape should be closer to those of the real world. Hydrophobicity is widely believed to play a central role in
The aim of this paper is twofold — to map out the folding the formation of 3D protein structures. In REE0] the ques-
properties of the two-dimensional continuum model&f/],  tion of whether proteins originate from random sequences of
hereafter denoted thAB model, and to analyze how the amino acids was addressed by means of a statistical analysis
folding properties depend upon the sequences using statisiia terms of blocked and random walk values formed by bi-
cal and state-of-the-art regression methods. nary hydrophobic assignments of the amino acids along the
The folding properties of thé&B model are investigated protein chains. The results, which were based upon proteins
with respect to thermodynamics and kinetics given a set oin the SWISS-PROT data ba$#&1], convincingly demon-
thoroughly simulated sequences. In total 300 sequences of Zirated that the amino acid sequences in proteins differ from
hydrophobic and hydrophilic residues-( and—1, respec- what is expected from random sequences in a statistical sig-
tively) are studied using an efficient dynamical-parameter alnificant way. In Ref[10] also preliminary results from the
gorithm (see Ref[7] and references therginThe thermody- AB model using the same data as in this work were subject
to the same statistical analysis. The interesting observation
was made that thé& B model sequences that fold well ac-

*Electronic address: irback@thep.lu.se cording to low(&%)-value criteria exhibit similar deviations
"Electronic address: carsten@thep.lu.se from randomness as for the functional proteins. The devia-
*Electronic address: frank@thep.lu.se tions from randomness can be interpreted as originating from
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anticorrelations in terms of an Ising spin model for the hy-ratio is that there are thermodynamically stable structures at
drophobicities. relatively high temperatures for this ratj@]. This set con-

Our studies of theAB model are limited to two dimen- tains 19 980 sequences, whereas the total number of se-
sions in order to be able to analyze many sequences withiquences with the same composition is 38 760. Among the
limited CPU resources. How realistic this approximation is300 sequences 4 are symmetric. The 300 distinguishable se-
can of course be questioned. The system may be “stiffer"quences can be taken as 300 independent sequences drawn
than a three-dimensional one when it comes to swappinfrom the distribution of all sequences with double weight for

monomer positions. every asymmetric sequence.
This paper is organized as follows. In Sec. Il we briefly
describe the model and generation of sequences. The Monte IIl. SIMULATIONS

Carlo method and what is being measured can be found in

Sec. Ill. The thermodynamics and kinetics of the system are A. Methods

described in Sec. IV, whereas Sec. V contains our statistical We have performed numerical simulations of both the
and ANN analysis. In Sec. VI we briefly review the results thermodynamic and kinetic behavior of the 300 randomly
from Ref.[10] comparing deviations from nonrandomness inselected sequences. At low temperature the system is in a
the two-dimensionahB model with those of functional pro- folded phase with high free-energy barriers, which makes

teins. A brief summary can be found in Sec. VII. conventional simulation methods very time consuming. As
in Ref. [7], we therefore employ the dynamical-parameter
Il. THE MODEL method for the thermodynamic simulations. In this approach

one tries to accelerate the simulation by letting some param-

eter of the model become a dynamical variable, which takes
The AB model consists of two kinds of monomessand  values ranging over a definite set. In the present work we

B, respectively. These are linked by rigid bonds of unithave taken the temperature as a dynamical parameter

length to form linear chains living in two dimensions. For an (“simulated tempering”[9]), which means that we simulate

N-mer the sequence of monomers is described by the binaie joint probability distribution

variableso, . ..,0ny and the configuration by the angles

6,, ...,0y_1, Whered, denotes the bend angle at sitand P(6,k)xexd —gk—E(8,0)/Ty], (4)

is taken to satisfy#;|< . The energy function is given by

A. General formulation

whereT,, k=1, ... K, are the allowed values of the tem-
N-1 N-2 N perature. Theg,'s are tunable parameters, which must be

E(0,0)= 2, Ei(6)+ >, > Ea(ry,07,09), (1) chosen carefully for each sequence. The determination of
i=2 =1 j=i+2 these parameters has been carried out by the same methods

as in Ref[7].
where The joint distributionP(8,k) is simulated by using an
E,(6,)=%(1—cosh,), ordinary Metropolis stepl2] in k and a hybrid Monte Carlo
updateg 13] of 4. The hybrid Monte Carlo update is based on
Ex(rij o1 ,01)24[“}12_ C(o; ,Uj)ri}e] ) the evolution arising from the fictitious Hamiltonian
N—1
andr;i=r;i(6;4q, ...,0;_1) denote the distances between 1 2
sites i an& j . Tlhe tern{ Ell(ei) favors alignment of three Huc(,6)= Z:zz ™ +B(0,0)/T, ®)

successive sites;—1, i, andi+1. The nonbonded interac-

tions E, are Lennard-Jones potentials with a specieswhere ; is an auxiliary momentum variable conjugate to
dependent coefficier€(o;,0;), which is taken to be 1 for g;. The first step in the update is to generate a new set of
an AA pair (strong attraction 1/2 for aBB pair (weak at- momenta 7; from the equilibrium distribution P(;)
traction, and —1/2 for an AB pair (repulsion. Conse- o«exp(—#7/2). Starting from these momenta and the old con-
quently, there is an energetic preference for separation béguration, the system is evolved through a finite-step ap-
tween the two kinds of monomers. In fact, it was proximation of the equations of motion. The configuration
demonstrated i8] that ground-state configurations tend to generated in such a trajectory is finally subject to an accept-
have a core consisting mainly 8f monomers, which shows or-reject question, which removes errors due to the discreti-
that A and B monomers behave as hydrophobic and polarzation of the equations of motion. The hybrid Monte Carlo
residues, respectively. The behavior of the model at finitepdate has two tunable parameters, the step siaed the
temperatureT is defined by the partition function number of steps in each trajectory.

The dynamical-parameter method greatly improves the
frequency of transitions between different free-energy val-
leys, as compared to plain hybrid Monte Carlo method. In
Ref. [7] a speed up factor of almost @vas observed for
system sizeN=10. ForN=20 we expect the gain to be even
larger.

In total 300 sequences were drawn randomly from the set In our simulations we used a set kf=13 allowed tem-
of all distinguishable chains with 14 and 6B monomers. perature values, which were equidistant iT Hnd ranging
Our motivation for this somewhat arbitrary choice AfB from 0.15 to 0.60. Each hybrid Monte Carlo trajectory was

N—-1

I1 de,
=2

exd —E(6,0)/T]. 3)

Z(T,O’):f

B. The sequences
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10 e (line) energies in the simulation of sequence(46e Table). Mea-
SETTTITTTTITTIT 1 surements were taken every ten iterations. Shown are the data cor-
- T=0.60 1 responding to the lowest allowed temperature.
0.8 — —]
C ] B. Measurements
& 06 — _ In our thermodynamic simulations the main goal is to find
& ] out whether the system exists in a state with well-defined
A - 1 shape. To address this question, we introduce the usual
04 — —] mean-square distance between configurations. For two con-
- ] figurationsa andb we define
- ] N
02 T 5 2 _ o LS a2
C 7 5ab:mmﬁizl X 1 =x {72, (6)
O O C | | I L1 )} I | | I 11| I_
o 1 2 3 4 5 _ .
52 where [x (¥ —x ®)| denotes the distance between the sites

x @ andx P (x @ x P e R?), and where the minimum is
taken over translations, rotations, reflections, and orienta-
tions. The probability distribution o8? for fixed temperature

T and sequence is given by

FIG. 1. P(6%) for T=0.15 andT=0.60, respectively, for the
sequences in Table I; 8%olid line), 10 (dashed ling and 50(dot-
ted ling. For T=0.15 the distribution for sequence 81 is dominated
by two narrow peaks at smadf?, which extend outside the figure

with a maximum value of around 20. P(52)= 1 J’ dﬂ(a)dea’)&( 52— 5§b)
Z(T,0)?
followed by one Metropolis step ik. The step size param- x @ E(0@,0)To—E(0™,0)/T )

eter e was taken to vary withl, from 0.0025 aff=0.15 to

0.005 afT= 0.6, whilen=100 was held fixed. For the typical whered(-) denotes the Dirac delta functioR(&?) is a very

sequence the average acceptance rate was around 95% fQlafy| quantity{5] for describing the magnitude of the rel-

the 6 update and 65% for thie update. For each sequence aeyant thermodynamic fluctuations, and can be determined
total of 440 000 update cycles were carried out, which renymerically. In Fig. 1 we show three examplesd3fdistri-

quires around 4 CPU hours on a DEC Alpha 2000. bution at two different temperatures. In what follows we will
In order to study the kinetic behavior of the model, we also frequently use the mean Bf 5%),

have performed hybrid Monte Carlo simulations at different

fixed values ofT. Starting from random coils, we study the

rate of the subsequent relaxation process. While our hybrid <52>:f do'?P(5'%)6"2. (8)
Monte Carlo dynamics is certainly different from any real

dynamics, it is still a small-step evolution, so the system hase energy level spectrum can be studied by using a quench-
to pass through the free-energy barriers. Hence, we expegiqy procedure, where whenever the lowest allowed tempera-
relaxation times obtained in this way to reflect the aCtuaIture value is ViSitEd, the System is quenched to zero tempera-
kinetic properties of the system. ture by means of a conjugate gradient minimization. With
Our simulations of the kinetics have been performed forthis method the ground states are found for most of the se-
five different T. The trajectory lengtme=0.25 was held quences. One reason for believing this is that the two or four
fixed, and the average acceptance rate was typically 85% @ymmetry-related copies of the lowest-lying minimum were
higher. all visited in the simulations. In Fig. 2 we show the evolution
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L L L TABLE |. Examples of three sequences.

3.0 — X 81 AAABAAABAAABBAABBAAA
. ~ ] 10 ABAAABBAABAAAAAAAABB
" - 50 BABAAAAAAABAAAABAABB

/2

w b - 7 lar, and show that the fluctuations in shape are large. At
v T=0.15P(&%) is, by contrast, strongly sequence dependent.
We see that one chain exists in a state with very well-defined
20 — v — shape, while the other two still undergo large fluctuations.
- % 8 The differences irP(8%) are clearly reflected in the mean
- (a) - value ( 5%), which is shown as a function df in Fig. 3(b).
Although these three chains behave in very different
ways, they have similar extension. In fact, from Figa)3t
can be seen that the differences in radius of gyration are 10%
or smaller at all the temperatures studied. Also, we note that
the radius of gyration decreases gradually with decreasing
temperature. No abrupt changes can be seen.

52}

B. Kinetics

Next we study the time needed by the system to find the
minimum energy configuration. Using hybrid Monte Carlo
dynamics, we monitor the mean-square distaﬁé&o this
configuration[see Eq(6)]. The simulations are started from
random coils, and as a criterion of successful folding we use
the condition53<0.3. At low temperatures the folding time
fluctuates widely, which makes the average folding time dif-
o ficult to measure. For this reason we have chosen to measure
0 —— — the probability of successful folding within a given time

’ ) : [1,15]. Following Ref.[1], this quantity will be called the
foldicity. In our simulations the maximum allowed folding
time is set to 5000 trajectories. For each of the 300 se-
FIG. 3. The temperature dependence@fthe radius of gyra- quences we studied five different temperatures,
tion (rg,»*? and(b) (&%) for the sequences in Table I: 8K), 10  T=0.15,0.18,0.24,0.34, and 0.60. For edcive carried out
(¢), and 50 (). 25 simulations for different initial configurations.

The foldicity is expected to be low both at high and low
of the quenched and unquenched energies in one of the simtemperature. At low temperature the suppression is due to

<6%>
|III|||||||||I|II||||III

Illl||l||||||||ll||l

lations. the ruggedness of the free-energy landscape. At high tem-
perature folding is slow because the search is random.
V. THERMODYNAMIC AND KINETIC PROPERTIES For a majority of the sequences studied we find that the

foldicity exhibits a peak in the interval 0.¥5T=<0.60. In

In this section we present the results of our thermody-order to get precise estimates of the height and location of
namic and kinetic simulations. Based on these results, wthe peak, one would clearly need more data points. However,
then formulate criteria for good folding sequences. the available data demonstrate that the position of the peak is
fairly sequence independent. In fact, for 243 of the 300 se-
quences we obtained a higher foldicityTat 0.34 than at the
other four temperatures. Also, we note that all sequences

The thermodynamic behavior of theB model has been have a foldicity of 12% or higher &=0.34, as can be seen
studied previously for chain lengtié=8 and 10[7]. This  from Fig. 4. Therefore, it appears that the kinetic behavior
study showed that whether or not the chain exhibits a wellhas a relatively weak sequence dependence.
defined structure depends strongly on the sequence, at fixed In order to illustrate the implications of this, we have
temperature. Using the dynamical-parameter method, we afglotted in Fig. 5 the foldicity in two different ways. In Fig.
now able to extend these calculationsNe-20. The results  5(a) foldicity is plotted against temperature, and in Figh)5
obtained closely resemble those fér=8 and 10[7]; in par- it is plotted against 6%). Again, we use the three sequences
ticular, they show that the sequence dependence of the theirr Table | as examples. Froifa) it can be seen that, at a
modynamic behavior remains strong 9= 20. given temperature, the foldicity is roughly similar for the

In order to illustrate this, we show in Figs. 1 and 3 resultsthree sequences. Nevertheless, it follows frdmnthat their
for the three sequences in Table I. In Fig. 1 #fedistribu-  folding properties are very different; sequence 10 has a well-
tions are shown for the lowest and highest temperatures studefined shape at the point where the system freezes, which is
ied, T=0.15 and 0.60. AT = 0.60 the distributions are simi- not true for the other two sequences.

A. Thermodynamics
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40 T T locate the lowest temperature at which folding is fastand
then study the thermodynamic behavior at this temperature.
If the sequence is found to exhibit a well-defined structure at
T, then it is a good folder. Alternatively, this can be formu-
lated in terms of the folding temperatufe, defined as the
temperature where the dominance of a single state sets in; a
good folder is a sequence with>T.
In our determination of good folders we take the kinetic
quantity T to be same for all sequences. This means that our
e classification is entirely determined by the thermodynamic
cerdh T T e T R behavior at a fixed temperature, which we takeTas0.15
0.2 0.4 0.6 0.8 1 [cf. Fig. 5@]. Our motivation for this simplifying approxi-
foldicity mation is that the kinetic behavior has a relatively weak se-
guence dependence, as discussed in the previous subsection.
FIG. 4. Histogram of the foldicity aT =0.34 for the full set of With this approximation, a natural criterion for good fold-
300 sequencessolid ling) and for a subset of 37 sequences thatgrs would be to require th$52>< 52 for somes. Such a cut
s_atisfy the thermodynamic stability condition in E@) (dashed g appropriate for most sequences. However, some care has
line). to be exercised since one might encounter situations where
P(48%) has a tiny but distant outlier bump, which can make
(8%) large even though the system spends a large fraction of
A good folder is a sequence that , at some value of théhe time very near one particular configuration. Taking this
parameterT, exists in a unique and kinetically accessibleinto account we define a sequence to be a good folder if
state with well-defined shape. One way to find out whether o1
or not a given sequence meets this requirement is to first <52><§ 2 or P(82<0.1)= ‘ d5!2p(512)>5 (9)
0

30

20

frequency

10

|||||||||||||||||

-

IIII||I|||IIII|IIII

(=}

C. Folding criteria

1.2 T T T T T T T T T T T T T T
- | | | ] with §°=0.3 andP=0.35.
1.0 — (a)—: With this choice of parameters, we find that 24 of our
C . sequences satisfy5?) < 5° whereas 30 satisfP(5°<0.1)
0.8 — — >P. Our set of good folders, which satisfy one or both of
ey C ] these conditions, contains 37 of the 300 sequences, or 12%.
T 06 [ ] The precise number of sequences classified as good fold-
% - . ers depends, of course, on the choicedadnd P, which to
“ 04 — ] some extent is arbitrary. However, it should be stressed that
C . for most of the sequences the classification is unambigiuous
0.2 - i in the sense that it is insensitive to small changes aind
- . P. Furthermore, we note that the foldicity distribution for
0.0 ELo N B B good folders is similar to that for all sequences, as can be
o 0.2 0.4 0.6 seen from Fig. 4. If these distributions had been different, the
T use of a sequence independ@ntvould have been unjusti-
1.2 T fied.
r I | | | ]
1.0 :— (b)": V. SEQUENCE CHARACTERISTICS OF GOOD FOLDERS
0.8 - = In this section we analyze ho{w?) depends upon the
> ] binary patterns of the sequences. This is done in two steps.
75 C ] First we make a statistical analysis in terms of correlations.
g5 06— 3 Second, we employ a feedforward ANN to prediaf?)
© - . given the sequence as input.
0.4 — —]
02 C 7 A. Choice of variables
. It turns out to be enlightening and profitable to transform
0.0 N . the original binary patterns into more global variables prior

[e;]

0 1 2 3 4 to performing the statistical and ANN analysis. The follow-
<6%> ing variables are formed:
Random walk representatiors r . In order to build in
FIG. 5. Foldicity againsta) T and(b) (5% for the sequences 81 some long range correlation properties we consider random
(%), 10 (¢), and 50 (0); see Table I. walk representations
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Block fluctuations—4(® and (%. For a block sizes we g 0.2 B T Xy X 4
define the variableEL0] '-og - I % x 3
—~ 0.0 [ + + —
s 8 L + h
. C + ]
Ui(s>:j21 Oi-1s+j=lis—Fi-ns, 1=1,...N/s 5 02 Fapy —
B O : * :
(11 -0.4 - =l
In order to efficiently capture the fluctuations of the block YY) I B BRI B s

variables we introduce the normalized variables 0 10 20

. N/s ) variable
S=_| 58 = (s) i=
vi K( 7i N,Zl ] ) . i=1,...NIs (12 FIG. 6. Correlations of 6%y againstr, [n=1,... ,20 (+),

PP li=1,... 5 (x), ¢ (O),Nia (©), andN¢ (D).
and the(normalized mean-square fluctuation of the block

variables ¥, also show strong positive correlations. This is consis-
g \is tent with what was observed for real proteins with limited
pI==> e (13 et hydrophobicity in Ref[10], where these variables are

i=1 anticorrelated as compared to what is expected from random

hydrophobicity distributions(3) The strongest positive cor-
where the constarK can be found in Ref.10]. relation is between %) and the number of internah’s
Number of internal A—N,. This is the number of (N,,). This is in line with what is expected according to the
o=+1 surrounded on both sides lay=+1. For boundary motivation when introducing\,, above.(4) Related to posi-

residues, a single adjaceat=+1 is sufficient for giving a  tive correlation ofN,, is the strong anticorrelation between
count. The reason for this choice of variable is that in the<52> and the number of clumpl.

homopolymer limit AAAA: - - A, the energy landscape is de-
generate and, hence, the fluctuations are large. Therefore,
one expects long stretches A% (or B’s) to be rare in good ) ) )
folders, and thal,, tends to be low for such sequences. Given the substantial correlations betws@i?) and the
Number of clumps-Nc. This quantity is defined as the Various quantities formed out of the sequence patterns, it
number of clumps ofr==1. The reason for including this should be pqssnble to make a regression model. If enough
variable is similar to what was argued o, above; it data are available for an efficient and reliable fit one should
seems natural to expect a hidf. for good folders. be able to predict the folding properties given a b|na_ry se-
We expect these preprocessed variables, which of cour<#/€nce. The state-of-the-art technique for such modeling are

are not independent of each other, to shed more light on thigedforward ANN(see, e.g., Ref.14]), which will be used
structure than the “raw’c==+1 ones, when it comes to here. This method has the advantage of capturing nonlinear

relate the sequences ¢62). dependencies in a generic way in contrast to standard linear
In this section we will make use of all patterns, even thosd €9ression app_roaches. In our case the feeo!forward A_‘NN
generated by symmetry giving rise to the saf@®). As consists of an input layer representing the variables defined
. . H 2
mentioned in Sec. Il B, 4 of the 300 original sequences ard! Sec. V A above, an output unit fofs®) and a set of

symmetric, which means that we have a total of 596 pattern idden ynits in order to model nonlinearities. The weights
at our disposal. connecting the nodes are the parameters of the system. In

order to avoid overfitting, the number of weighfgaram-
eterg should be less than the number of “training” patterns.
Also, some of the patterns should be set aside for “testing.”

To what extent is( 52) correlated withr,, '//i(4), VSl Using all the quantitiegonly r, throughrg due to symme-
Nia, andNc? In Fig. 6 the correlation betweegis?) and  tries) defined in Sec. V A with 5 hidden units implies 1%
these variables is shown. + 5 = 90 parameters.

As can be seen from Fig. 6 the correlations are substan- The network was trained using th&TNET 3.0 package
tial. It should also be mentioned that the same correlation16] with an initial learning raten,=0.5, which decreases
patterns emerge when reducing the data set by a factor of 4ccording tozn,=0.998,_, and momentunx=0.7. In or-

The symmetry for , aroundn=10 is inherent from the way der to obtain as reliable performance as possible, the
we have generated the data, and leaves us with nine indepel-fold cross validation procedure was used, where the data
dent measurements, corresponding to, &.g.throughry.  set was randomly divided int& equal parts. Each of the
The following general observations can be madg:(5°) K different parts was once used as a test set, while the re-
and r, exhibit sizable positive correlations near the endmaining K—1 sets were used for training. In our problem
points, implying that proteins with mang’s near the ends sets withK=2, 3, and 4 were used. In Fig. 7 the resulting
do not fold well.(2) (5%) and the block fluctuationg/{*) and  prediction,{ 5?), is compared with the true valugss®), for a

C. Atrtificial neural networks

B. Correlations



866 ANDERS IRBACK, CARSTEN PETERSON, AND FRANK POTTHAST 55

2.5 L LI UL L L 1O_||n||||1|||||||||||.||||||_
E s (a) —
o 1 61— —]
“© _ 0 C ]
i¥ TouE =
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FIG. 7. Comparison of predicted and true vaIu(e%?) and S

(%), respectively, using< =3 for sequences 100 — 200. In order to N
guide the eye, lines connecting the points are drawn. The full line 15 — | ! ! | 1
representg62) and the dashed lings?). - (b) T
representative subset of the sequences usin@ is shown. i |
As can be seen from Fig. 7 the predicted values follow the 10 — +
true values pretty well even though sometimes quantitative - r g 4
agreement is lacking. The degree of success can be quanti- ‘é_ i i
fied using the standard error of prediction, i |
5 — —
11 A L i
R=— 52 (69)—(6%)? (14 [ ]

g
where o is the standard deviation df®) for all 596 pat- N V< S I P I i
terns. ForK=3 and 4 we findR=0.69+0.02. This value 0 2.5 5 7.5 10 125
deteriorates somewhat if a smaller subset of the data is used, S

which indicates that with a larger available data set the per-
formance is likely to improve. In the long term one would
like to predict a classificatioiffolder or nonfoldey but the

limited folding data at our disposal do not yet allow for that.

FIG. 8. Mean-square fluctuation of the block variablg&?,
against block size. (a) Good folding sequences in t#eB model.
Also shown are the meas(full line) and thes* o band(bounded
by dotted lineg for random sequencé40]. (b) Functional proteins
VI. NONRANDOMNESS AND FOLDING for |X|<0.5, 50<N<150 (+, 2457 qualifying proteins
150<N=250 (X, 2228, and 256<N=<350 (¢, 1642. All data

In Sec. V we studied the difference between folding andyre from the SWISS-PROT data bddd]. The straight line is the
nonfolding sequences in th&B model. This could be done result for random sequencgso).

in a controlled way due to the fact that we have unbiased
samples of folding and nonfolding sequences at our disposal. |, orger to examine these two groups of binary strings, it
To assess the applicability of our methods to real amino acigk jntryctive to consider the scaling of the fluctuation vari-

sequences is more difficult, and we shall not deal here _Wit%blezp(s) with block sizes [10]. In Fig. 8 we show results for
the problem of predicting the behavior of individual amino . quantity. For both groups, it can be seen #hét grows

Zlicr:grsiq%?Qcﬁzbigﬁwe;t?grrﬁecc\g\/r?:éd cl)lrl:gir;{o t?)traeIS:r tzac;tlézgigniﬁcantly slower withs than for random sequences. This
of fur%lctignalp roteing go exhibit intergstin gimilaritie% with ehavior implies that the sequence variaigexhibit anti-
P 9 correlations. A simple way to see that is to consider the

g)é(:lr‘[%(?]e?heencerztgggész TJZ?]ecgsascc\),anssi di?gjo?ﬁtg;]d N 5ne-dimensional Ising model, where each configuration is
) ' P d given a statistical weight

have a limited net hydrophobicity

N—-1
= N, —Np (15) POCGX%KI_E]- 0'i0'i+1) (16)

JNp(1-p)’

whereN, is the number of hydrophobic residues,is the  For K=0 theg;'s are completely random, whil&>0 and
total number of residues, aqis the average dil. /N over  K<O0 correspond to ferromagnetic and antiferromagnetic be-
all sequences. In the following, we consider sequences withavior, respectively. It turns out that one obtains results simi-
|X|<0.5. lar to those seen in Figs(& and &b) for K= —0.25.



55 IDENTIFICATION OF AMINO ACID SEQUENCES WITH ... 867

VIl. SUMMARY than the kinetic ones is in line with the lattice model results
of Ref.[4]. These authors introduced a kinetic glass transi-

Fairly detailed studies of the folding properties of a toytion temperature, which was found to be nearly sequence

model for proteins, containing effective hydrophobicity in- '@dependent. Although the kinetic studies of Rpf] are

teractions only, have been performed. The thermodynami ;
quantity(52) exhibits a strong sequence dependence in conmore elaborate than ours, it should be stressed, however, that

trast to foldicity, which measure the kinetic properties.©OUr data provide no j'ustificatic.)n for introdycing this transi-

Hence criteria for chains with good folding properties havelion temperature, which may indicate a difference between

been devised solely in terms ¢52). With these criteria, the models.

approximate|y 10% of the 300 generated seguences are clas- USing statistical and artificial neural network methOdS,

sified as good folders. These conclusions have been possitiégbstantial functional dependencies between sequence pat-

due to extensive searches using an efficient dynamicaterns and &%) are revealed. With larger statistics it should be

parameter algorithm, which with very large probability visits possible given the sequence pattern to pre@#p within a

the ground states. A similar fraction of good folders wasreasonable confidence level, in other words to predict

obtained in the lattice model study of RgL], where 30 out whether a given sequence folds or not.

of 200 randomly chosen sequences were classified as good Related to this strong correlation is the observed pattern

folders. of the nonrandomness for the folders, which show similar
Our conclusion that the thermodynamic properties arejualitative behavior with what is observed for real proteins

more important for the classification of folders or nonfolders[10].
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